Файл:Displacement current in capacitor.svg

АгӀонан чулацам кхечу меттанашкахь тӀекхочуш бац.
ХӀара агӀо Википеди чуьра йу — маьрша энциклопеди

Оригиналан файл(SVG-файл, лартӀахь йу 744 × 800 пиксель, файлан барам: 57 Кб)

ХӀара файл Викиларма чуьра йу и лело йиш йу массо проекташкахь. Цунна хаам гайтина лахахь. Файл Викилармехь

Файлах лаьцна

Цуьнах лаьцна
English: Diagram of a widely used example demonstrating need for the displacement current term in Maxwell's equations.
The diagram shows a capacitor being charged by current flowing through a wire, which creates a magnetic field around it. The magnetic field is found from Ampere's law:

The equation says that the integral of the magnetic field around a loop is equal to the current through any surface spanning the loop, plus a term depending on the rate of change of the electric field through the surface. This term, the second term on the right, is the displacement current. For applications with no time varying electric fields (unchanging charge density) it is zero and is ignored. However in applications with time varying fields, such as circuits with capacitors, it is needed, as shown below. Any surface intersecting the wire, such as , has current passing through it so Ampere's law gives the correct magnetic field:

But surface spanning the same loop that passes between the capacitor's plates has no current flowing through it, so without the displacement current term Ampere's law gives:

So without the displacement current term Ampere's law fails; it gives different results depending on which surface is used, which is inconsistent. The 'displacement current' term provides a second source for the magnetic field besides current; the rate of change of the electric field . Between the capacitor's plates, the electric field is increasing, so the rate of change of electric field through the surface is positive, and its magnitude gives the correct value for the field field found above.

James Clerk Maxwell added the displacement current term to Ampere's law around 1861.

Example taken from Feynman, Richard; Robert Leighton; Matthew Sands (1964) The Feynman Lectures on Physics, Vol.2, Addison-Wesley, USA, p.18-4, using slightly different terminology.
Терахь
Хьост Сан болх
Автор Chetvorno
Бакъонаш
(Йуха хӀара файл лелор)
I Chris Burks (Chetvorno) the author release this work into the public domain for any use whatever.

Лицензи

Public domain Аса, хӀокху произведенин авторийн бакъо йолучу, иза йукъараллин рицкъан дӀало. ХӀара бакъо лелаш йу дуьнена массо меттигехь.
Цхьайолу пачхьалкхашкахь юридически магийна дац, иштта делахь:
Аса массарна а бакъо ло хӀара произведени шайна луург деш лело цхьаа тӀедиллина хӀума а доцуш, Ӏедало де бохург дичахьана.

Куьг

ТӀетоха кху могӀанан тӀе хӀокху файлах лаьцна хаам
Diagram showing displacement current in a capacitor

ХӀокху файл тӀера элементаш

гойту объект

ХӀокху билгалонан цхьадолу маьӀнаш ду элемент йоцуш

Файлан истори

Тlетаlаде терахь/хан, муха хилла хьажарна и файл.

Терахь/ХанЖимаФайлан барамДекъашхоБилгалдаккхар
карара2008, 20 ноябрь, 14:28Жимо верси 2008, 20 ноябрь, 14:28744 × 800 (57 Кб)Chetvorno== Summary == {{Information |Description={{en|Diagram of a widely used example demonstrating need for the displacement current term in Maxwell's equations.}} The diagram shows a [[Wikip
2008, 11 ноябрь, 04:56Жимо верси 2008, 11 ноябрь, 04:56744 × 800 (58 Кб)Chetvorno{{Information |Description=Diagram demonstrating need for displacement current term in Ampere's Law. |Source=Own work by uploader |Date=2008-11-10 |Author=Chetvorno |Permission=I Chris Burks (Chetvorno) the author rel

ХӀара файл лахарчу 1 агӀонгахь лелош йу:

Глобалан файл лелор

ХӀара файл лелош йу лахахь гайтина йолу википедеш чохь: